First Order Unstructured Algorithms Applied to the Solution of the Euler Equations in Three-Dimensions
نویسندگان
چکیده
In the present work, the Roe, the Steger and Warming, the Van Leer, the Harten, the Frink, Parikh and Pirzadeh, the Liou and Steffen Jr. and the Radespiel and Kroll schemes are implemented, on a finite volume context and using an upwind and unstructured spatial discretization, to solve the Euler equations in the three-dimensional space. The Roe, the Harten, and the Frink, Parikh and Pirzadeh schemes are flux difference splitting ones, whereas the others schemes are flux vector splitting ones. All seven schemes are first order accurate in space. The time integration uses a Runge-Kutta method and is second order accurate. The physical problems of the supersonic flow along a ramp and the “cold gas” hypersonic flow along a diffuser are solved. The results have demonstrated that the Liou and Steffen Jr. scheme is the most conservative algorithm among the studied ones, whereas the Van Leer scheme is the most accurate. Key-Words: Flux difference splitting algorithms, Flux vector splitting algorithms, Unstructured schemes, Euler equations, Three-Dimensions, Supersonic and hypersonic flows.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملApproximated solution of First order Fuzzy Differential Equations under generalized differentiability
In this research, a numerical method by piecewise approximated method for solving fuzzy differential equations is introduced. In this method, the solution by piecewise fuzzy polynomial is present. The base of this method is using fuzzy Taylor expansion on initial value of fuzzy differential equations. The existence, uniqueness and convergence of the approximate solution are investigated. To sho...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملSimulation of Store Separation using Low-cost CFD with Dynamic Meshing
The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...
متن کامل